Note: Calculating % abundances of two isotopes is not on this worksheet but will be on the quiz - see classwork or NB Accelerated Chemistry Unit? - Distinguishing among stomes of two isotopes is not on this Name Key

Unit 2 - Distinguishing among atoms - atomic mass calculations Homework

Directions: Read each statement and select the best answer. Place your answers on the lines provided to you.

- Hypothetical element Z consists of two isotopes; Z 25 and Z 27. The atomic mass of element Z is 26.896 amu. Which isotope has the largest percent abundance?
 - a. Z 25
 - b. Z 27
 - c. They have equal abundances.
 - d. Can not be determined from information given.
- 2. Hypothetical element Y has an atomic mass of 32.06 amu. It consists of four different isotopes, Y - 32, Y - 33; Y - 34; Y - 35. Which isotope has the largest percent abundance?
 - a. Y 32
 - b. Y 33
 - c. Y 34
 - d. Y 35
 - e. Can not be determined from information given.
- 3. Hypothetical element A has three different isotopes; A 102 (101.98 amu); A 104 (103.98 amu); A - 106 (106.0 amu). Which statement is true?
 - a. Element A's atomic mass can be less than 101.98 amu.
 - b. Element A's atomic mass can not be greater than 106.0 amu.
 - c. Element A's atomic mass is probably 105.0 amu.
 - d. All of the isotopes have the same number of neutrons
- 4. Hypothetical element X has four different isotopes. Isotope X 100 has an abundance of 50%. Isotope X -102 has an abundance of 10%. Isotope X - 104 has an abundance of 30%. What is the abundance of the fourth isotope X - 106?
 - a. 30%
- b. 10%
- c. 40%
- d. 50%
- 5. B Hypothetical element B has three different isotopes. Isotope B 12 has an abundance of 50%, B - 13 has an abundance of 25% and B-14 has an abundance of 25%. Which picture below best depicts element B?

Unit 2 - Distinguishing among atoms - atomic mass calculations Page 1 of 2

Directions: Complete the following questions. Show all relevant work.

6. Copper has two naturally occurring isotopes: copper-63 and copper-65. The abundance of copper-63 is 69.17%; the atomic mass of copper-63 is 62.94 amu. The relative abundance of copper-65 is 30.83%; the atomic mass is 64.93 amu. Calculate the atomic mass for the element copper.

$$= \frac{4354 \, \text{amu} + 2002 \, \text{amu}}{100} = \frac{63.56 \, \text{amu}}{100}$$
(63.56 amu)

7. Magnesium has three naturally occurring isotopes: magnesium – 24, magnesium – 25 and magnesium – 26 as summarized in the table below. Calculate the atomic mass for the element magnesium.

Isotope	Atomic mass (amu)	Percent abundance
Magnesium - 24	23.985042	78.99%
Magnesium - 25	24.985837	10,00%
Magnesium - 26	25.982593	11.01%

(24.31 amu)

8. The element sulfur has an atomic mass of 32.06 amu. Sulfur has four naturally occurring isotopes, S – 32, S – 33, S – 34 and S – 36 as summarized in the table below. What is the atomic mass of S – 34.

Isotope	Atomic mass (amu)	Percent abundance
S – 32	31.972	95.002%
S – 33	32.971	0.76%
S – 34	?	4.22%
S – 36	35.967	0.014%

$$32.00 = 3003 + 4.22 \times$$
Unit 2 - Distinguishing among atoms – atomic mass calculations
Page 2 of 2

$$3206 = 3063 + 4.22 \times \rightarrow 143 = 4.22 \times \rightarrow \times = 33.9 \text{ AMU}$$